METHODS: Plasma samples were collected from 9 healthy volunteers and 12 cardiac surgical patients. We measured TG (Thrombinoscope) using in vitro 50% dilution plasma and in vivo dilution plasma after cardiopulmonary bypass, in parallel with thromboelastometry (ROTEM) and standard coagulation assays. In vitro additions of FVIIa/FX (0.35, 0.7, and 1.4 μg/mL, based on the FVIIa level), rFVIIa (1.4, 2.8, and 6.4 μg/mL), prothrombin complex concentrate (0.3 international unit), and 20% plasma replacement were evaluated.
RESULTS: In diluted plasma, the addition of either FVIIa/FX or rFVIIa shortened the lag time and increased the peak TG, but the effect in lag time of FVIIa/FX at 0.35 μg/mL was more extensive than rFVIIa at 6.4 μg/mL. Prothrombin complex concentrate increased peak TG by increasing the prothrombin level but failed to shorten the lag time. No improvement in any of the TG variables was observed after 20% volume replacement with plasma. The addition of factor concentrates normalized prothrombin time/international normalized ratio but not with plasma replacement. In cardiac patients, similar patterns were observed on TG in post–cardiopulmonary bypass samples. FVIIa/FX shortened clotting time (CT) in a concentration-dependent manner on CT on thromboelastometry. Plasma replacement did not improve CT, but a combination of plasma and FVIIa/FX (0.35 μg/mL) more effectively shortened CT than FVIIa/FX alone.
CONCLUSIONS: The combination of FVIIa and FX improved TG more efficiently than rFVIIa alone or plasma in dilutional coagulopathy models. The required FVIIa dose in FVIIa/FX was considerably lower than those reported during bypassing therapy in hemophilia patients (1.4–2.8 μg/mL). The combination of plasma could restore coagulation more efficiently compared to FVIIa/FX alone. Lesser FVIIa requirement to exert procoagulant activity may be favorable in terms of reducing systemic thromboembolic complications.