Background

High-density electroencephalographic (EEG) monitoring remains underutilized in clinical anesthesia, despite its obvious utility in unraveling the profound physiologic impact of these agents on central nervous system functioning. In school-aged children, the routine practice of rapid induction with high concentrations of inspiratory sevoflurane is commonplace, given its favorable efficacy and tolerance profile. However, few studies investigate topographic EEG during the critical timepoint coinciding with loss of responsiveness—a key moment for anesthesiologists in their everyday practice. The authors hypothesized that high initial sevoflurane inhalation would better precipitate changes in brain regions due to inhomogeneities in maturation across three different age groups compared with gradual stepwise paradigms utilized by other investigators. Knowledge of these changes may inform strategies for agent titration in everyday clinical settings.

Methods

A total of 37 healthy children aged 5 to 10 yr underwent induction with 4% or greater sevoflurane in high-flow oxygen. Perturbations in anesthetic state were investigated in 23 of these children using 64-channel EEG with the Hjorth Laplacian referencing scheme. Topographical maps illustrated absolute, relative, and total band power across three age groups: 5 to 6 yr (n = 7), 7 to 8 yr (n = 8), and 9 to 10 yr (n = 8).

Results

Spectral analysis revealed a large shift in total power driven by increased delta oscillations. Well-described topographic patterns of anesthesia, e.g., frontal predominance, paradoxical beta excitation, and increased slow activity, were evident in the topographic maps. However, there were no statistically significant age-related changes in spectral power observed in a midline electrode subset between the groups when responsiveness was lost compared to the resting state.

Conclusions

High initial concentration sevoflurane induction causes large-scale topographic effects on the pediatric EEG. Within the minute after unresponsiveness, this dosage may perturb EEG activity in children to an extent where age-related differences are not discernible.

Editor’s Perspective
What We Already Know about This Topic
  • The electroencephalogram (EEG) of children during maintenance general anesthesia varies with age, likely caused by the inverted U-shape trajectories of gray matter volumes during brain development
  • Since brain regions mature at different rates in a nonlinear fashion, we might expect variations in topographic EEG between different age groups throughout childhood
What This Article Tells Us That Is New
  • In young school-age children, the high-density EEG during induction of anesthesia is dominated by widespread large increases in delta power—similar to that seen in adults
  • There were no age-related changes in the topographic profile of the EEGs