I thought this was important since it is about healthcare fraud.
Businesses are using analytics to curb losses
The Federal Bureau of Investigation estimates that healthcare fraud costs are approximately $80 billion annually. But it could be closer to $700 billion annually if fraud and improper payments are lumped together, said Julie Malida, principal of Health Care Fraud Solutions at SAS Institute Inc. This is 100 times larger than in the financial sector, she said.
The vast amount of waste occurs mainly because there is no one group that is held accountable for stopping fraud in healthcare. Losses are absorbed by doctors, insurers, and federal and state governments.
“No one entity physically controls the reputational risk as well as dollar risk for fraud in healthcare,” Malida said. “It is so much more decentralized and lucrative than banking.”
To prevent some of the billions from being siphoned from the healthcare system, many organizations are turning toward analytics. Used across a wide range industries, analytics is the act of taking data from various sources – like medical claims or insurance records – to find errors. Some analytics are used to trace money that has been wrongfully paid and newer, predictive models are used to prevent payout before it occurs.
The most well-know healthcare entity using analytics is the Centers for Medicare & Medicaid Services, which processes 4.8 million claims a day from providers across the country. But the usage of analytics is quickly being spread across all healthcare sectors.
“This is definitely the direction they had to go and the industry generally has to go there, too,” said Louis Saccoccio, executive director of the National Health Care Anti-fraud Association. “Using analytics to detect potential fraud will be absolutely necessary.”
Saccoccio said analytics break down into four major categories. The first is looking at normal rules of care and how they might be broken. For instance, using filters to see if a service was provided to one patient twice in a day or if they are providing more services than is possible in a day.
The second is looking for anomalies. Insurers can look through data to see if certain providers are claiming they consistently offer more complex or costly services than their peers.
Another type of anomaly has become more common during the recession, said Peter Millar, director of technology applications for ACL Services Ltd., an audit and risk management organization. Millar said they have seen insurance beneficiaries add family members that are not eligible to be on their health plans. For instance, if someone’s brother is out of work, a family member might claim his kids on an insurance plan. Analyzing data would show it odd for someone to have two kids one year and five the next.
The third category is more high tech and involves predictive modeling. Here, an organization like CMS would take a case of fraud that is committed and create a model. The system is then programmed to look for similar patterns in other claims.
The fourth is one of the newest kinds of analytics called social networking. Here an insurer analyzes the financial ties of a provider who has committed fraud. They could then trace things like the labs they use or hospitals they work with to see if there is any suspicious activity.
“When you start linking entities together, you can sometimes spot if one provider is moving activity around among several physicians or hospitals so no one looks like an outlier,” she said. “Then when you group them together, you now can actually see there is some sort of odd billing.”
The more advanced predictive modeling and social networking take more funds and manpower than the others, but Malida said all organizations can benefit from analytics.
“Some insurance companies are still doing only retrospective fraud detection – finding it after the claim has been paid,” she said. “But the money is usually gone and it takes a long time to get it back, if they even can. It is always more effective to get it before paying out.”
Leave a Reply
You must be logged in to post a comment.