Background

Exaggerated lung strain and stress could damage lungs in anesthetized children. The authors hypothesized that the association of capnoperitoneum and lung collapse in anesthetized children increases lung strain-stress. Their primary aim was to describe the impact of capnoperitoneum on lung strain-stress and the effects of an individualized protective ventilation during laparoscopic surgery in children.

Methods

The authors performed an observational cohort study in healthy children aged 3 to 7 yr scheduled for laparoscopic surgery in a community hospital. All received standard protective ventilation with 5 cm H2O of positive end-expiratory pressure (PEEP). Children were evaluated before capnoperitoneum, during capnoperitoneum before and after lung recruitment and optimized PEEP (PEEP adjusted to get end-expiratory transpulmonary pressure of 0), and after capnoperitoneum with optimized PEEP. The presence of lung collapse was evaluated by lung ultrasound, positive Air-Test (oxygen saturation measured by pulse oximetry 96% or less breathing 21% O2 for 5 min), and negative end-expiratory transpulmonary pressure. Lung strain was calculated as tidal volume/end-expiratory lung volume measured by capnodynamics, and lung stress as the end-inspiratory transpulmonary pressure.

Results

The authors studied 20 children. Before capnoperitoneum, mean lung strain was 0.20 ± 0.07 (95% CI, 0.17 to 0.23), and stress was 5.68 ± 2.83 (95% CI, 4.44 to 6.92) cm H2O. During capnoperitoneum, 18 patients presented lung collapse and strain (0.29 ± 0.13; 95% CI, 0.23 to 0.35; P < 0.001) and stress (5.92 ± 3.18; 95% CI, 4.53 to 7.31 cm H2O; P = 0.374) increased compared to before capnoperitoneum. During capnoperitoneum and optimized PEEP, children presenting lung collapse were recruited and optimized PEEP was 8.3 ± 2.2 (95% CI, 7.3 to 9.3) cm H2O. Strain returned to values before capnoperitoneum (0.20 ± 0.07; 95% CI, 0.17 to 0.22; P = 0.318), but lung stress increased (7.29 ± 2.67; 95% CI, 6.12 to 8.46 cm H2O; P = 0.020). After capnoperitoneum, strain decreased (0.18 ± 0.04; 95% CI, 0.16 to 0.20; P = 0.090), but stress remained higher (7.25 ± 3.01; 95% CI, 5.92 to 8.57 cm H2O; P = 0.024) compared to before capnoperitoneum.

Conclusions

Capnoperitoneum increased lung strain in healthy children undergoing laparoscopy. Lung recruitment and optimized PEEP during capnoperitoneum decreased lung strain but slightly increased lung stress. This little rise in pulmonary stress was maintained within safe, lung-protective, and clinically acceptable limits.

Editor’s Perspective
What We Already Know about This Topic
  • Anesthesia-induced atelectasis and small airway closure are common in anesthetized children and may be further magnified during laparoscopic surgery
What This Article Tells Us That Is New
  • In healthy anesthetized children undergoing laparoscopic surgery, a capnoperitoneum increased lung strain by 50% with a minimal impact on lung stress
  • The detrimental effects of the capnoperitoneum could be reversed by a protective ventilation strategy combining lung recruitment and an individualized positive end-expiratory pressure titration