BACKGROUND:
Propofol has addictive properties, even with a single administration, and facilitates dopamine secretion in the nucleus accumbens (NAc). Activation of the dopaminergic circuits of the midbrain reward system, including the ventral tegmental area (VTA) and NAc, plays a crucial role in addiction. However, the effects of propofol on synaptic transmission and biochemical changes in the VTA-NAc circuit remain unclear.
METHODS:
We investigated the effects of subanesthetic doses of propofol on rat VTA neurons and excitatory synaptic transmission in the NAc using slice patch-clamp experiments. Using immunohistochemistry and western blot analyses, we evaluated the effects of intraperitoneal propofol administration on the expression of addiction-associated transcription factor ΔFosB (truncated form of the FBJ murine osteosarcoma viral oncogene homolog B protein) in the NAcs in 5-week-old rats.
RESULTS:
In the current-clamp mode, a subanesthetic dose (0.5–5 µmol/L) of propofol increased the action potential frequency in about half the VTA neurons (excited neurons: control: 9.4 ± 3.0 Hz, propofol 0.5 µmol/L: 21.5 ± 6.0 Hz, propofol 5 µmol/L: 14.6 ± 5.3 Hz, wash: 2.0 ± 0.7 Hz, n = 14/27 cells; unchanged/suppressed neurons: control: 1.68 ± 0.94 Hz, propofol 0.5 µmol/L: 1.0 ± 0.67 Hz, propofol 5 µmol/L: 0.89 ± 0.87 Hz, wash: 0.16 ± 0.11 Hz, n = 13/27 cells). In the voltage-clamp mode, about half the VTA principal neurons showed inward currents with 5 µmol/L of propofol (inward current neurons: control: −20.5 ± 10.0 pA, propofol 0.5 µmol/L: −62.6 ± 14.4 pA, propofol 5 µmol/L: −85.2 ± 18.3 pA, propofol 50 µmol/L: −17.1 ± 39.2 pA, washout: +30.5 ± 33.9 pA, n = 6/11 cells; outward current neurons: control: −33.9 ± 14.6 pA, propofol 0.5 µmol/L: −29.5 ± 16.0 pA, propofol 5 µmol/L: −0.5 ± 20.9 pA, propofol 50 µmol/L: +38.9 ± 18.5 pA, washout: +40.8 ± 32.1 pA, n = 5/11 cells). Moreover, 0.5 µmol/L propofol increased the amplitudes of evoked excitatory synaptic currents in the NAc, whereas >5 µmol/L propofol decreased them (control: 100.0 ± 2.0%, propofol 0.5 µmol/L: 118.4 ± 4.3%, propofol 5 µmol/L: 98.3 ± 3.3%, wash [within 10 min]: 70.7 ± 3.3%, wash [30 minutes later]: 89.9 ± 2.5%, n = 13 cells, P < .001, Dunnett’s test comparing control and propofol 0.5 µmol/L). Intraperitoneally administered subanesthetic dose of propofol increased ΔFosB expression in the NAc, but not in VTA, 2 and 24 hours after administration, compared with the Intralipid control group (propofol 2 hours: 0.94 ± 0.15, 24 hours: 0.68 ± 0.07; Intralipid 2 hours: 0.40 ± 0.03, 24 hours: 0.37 ± 0.06, P = .0002 for drug in the 2-way analysis of variance).
CONCLUSIONS:
Even a single administration of a subanesthetic dose of propofol may cause rewarding change in the central nervous system. Thus, there is a potential propofol rewarding effect among patients receiving anesthesia or sedation with propofol, as well as among health care providers exposed to propofol.
Leave a Reply
You must be logged in to post a comment.