Authors: Johanna M. Lee, A.B. et al
Anesthesiology 8 2017, Vol.127, 293-306.
Background: In adults, frontal electroencephalogram patterns observed during propofol-induced unconsciousness consist of slow oscillations (0.1 to 1 Hz) and coherent alpha oscillations (8 to 13 Hz). Given that the nervous system undergoes significant changes during development, anesthesia-induced electroencephalogram oscillations in children may differ from those observed in adults. Therefore, we investigated age-related changes in frontal electroencephalogram power spectra and coherence during propofol-induced unconsciousness.
Methods: We analyzed electroencephalogram data recorded during propofol-induced unconsciousness in patients between 0 and 21 yr of age (n = 97), using multitaper spectral and coherence methods. We characterized power and coherence as a function of age using multiple linear regression analysis and within four age groups: 4 months to 1 yr old (n = 4), greater than 1 to 7 yr old (n = 16), greater than 7 to 14 yr old (n = 30), and greater than 14 to 21 yr old (n = 47).
Results: Total electroencephalogram power (0.1 to 40 Hz) peaked at approximately 8 yr old and subsequently declined with increasing age. For patients greater than 1 yr old, the propofol-induced electroencephalogram structure was qualitatively similar regardless of age, featuring slow and coherent alpha oscillations. For patients under 1 yr of age, frontal alpha oscillations were not coherent.
Conclusions: Neurodevelopmental processes that occur throughout childhood, including thalamocortical development, may underlie age-dependent changes in electroencephalogram power and coherence during anesthesia. These age-dependent anesthesia-induced electroencephalogram oscillations suggest a more principled approach to monitoring brain states in pediatric patients.
Leave a Reply
You must be logged in to post a comment.