Background

Although the widely used single L-enantiomers of local anesthetics have less toxic effects on the cardiovascular and central nervous systems, the mechanisms mediating their antinociceptive actions are not well understood. The authors hypothesized that significant differences in the ion channel blocking abilities of the enantiomers of bupivacaine would be identified.

Methods

The authors performed electrophysiologic analysis on rat dorsal root ganglion neurons in vitro and on spinal transmissions in vivo.

Results

In the dorsal root ganglion, these anesthetics decreased the amplitudes of action potentials. The half-maximum inhibitory concentrations of D-enantiomer D-bupivacaine were almost equal for Aβ (29.5 μM), Aδ (29.7μM), and C (29.8 μM) neurons. However, the half-maximum inhibitory concentrations of L-bupivacaine was lower for Aδ (19.35 μM) and C (19.5 μM) neurons than for A β (79.4 μM) neurons. Moreover, D-bupivacaine almost equally inhibited tetrodotoxin-resistant (mean ± SD: 15.8 ± 10.9% of the control, n = 14, P < 0.001) and tetrodotoxin-sensitive (15.4 ± 15.6% of the control, n = 11, P = 0.004) sodium currents. In contrast, L-bupivacaine suppressed tetrodotoxin-resistant sodium currents (26.1 ± 19.5% of the control, n = 18, P < 0.001) but not tetrodotoxin-sensitive sodium currents (74.5 ± 18.2% of the control, n = 11, P = 0.477). In the spinal dorsal horn, L-bupivacaine decreased the area of pinch-evoked excitatory postsynaptic currents (39.4 ± 11.3% of the control, n = 7, P < 0.001) but not touch-evoked responses (84.2 ± 14.5% of the control, n = 6, P = 0.826). In contrast, D-bupivacaine equally decreased pinch- and touch-evoked responses (38.8 ± 9.5% of the control, n = 6, P = 0.001, 42.9 ± 11.8% of the control, n = 6, P = 0.013, respectively).

Conclusions

These results suggest that the L-enantiomer of bupivacaine (L-bupivacaine) effectively inhibits noxious transmission to the spinal dorsal horn by blocking action potential conduction through C and Aδ afferent fibers.

Editor’s Perspective
What We Already Know about This Topic
  • Both the therapeutic and toxic effects of local anesthetics are influenced by the stereochemistry of these drugs
  • L-bupivacaine has a favorable toxicity profile compared with D-bupivacaine, but possible differential effects on action potential conduction are poorly understood
What This Article Tells Us That Is New
  • The concentration of L-bupivacaine required to block C and Aδ neurons was lower than the required concentration of D-bupivacaine
  • In the spinal cord dorsal horn, L-bupivacaine appeared to be more selective for blocking nociceptive signal transmission than did D-bupivacaine